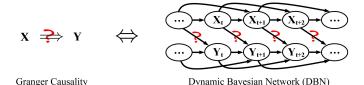
# Assessing nonlinear Granger causality from multivariate time series

#### Xiaohai Sun

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

September 17, 2008






#### Learning of causality in time series

- ▶  $X := (..., x_{t-1}, x_t, x_{t+1}, ...)$ : discrete time, continuous state process  $t \in \mathbb{Z}$ : discrete time point, usually taken at equally spaced intervals
- ► Time-delayed vector:  $X_t := (x_{t-n+1}, \dots, x_{t-1}, x_t)^T$
- ▶ Task: bivariate time series (X, Y) observed, estimate whether the underlying process of X is causal to the underlying process of Y or/and the other way around.
- ▶ Notation: "X Y", "X  $\Rightarrow$  Y", "X  $\Leftarrow$  Y", or "X  $\Leftrightarrow$  Y"
- ▶ Granger's concept of causality (1969):  $X \Rightarrow Y$ , if the future values of Y can be better predicted using the past values of X and Y compared to using the past values of Y alone.

## Linear Granger causality



► Standard test: linear autoregression models

$$Y_{t+1} = a^{\mathsf{T}} \cdot Y_t + \epsilon^{(\mathsf{Y})}$$
 and  $Y_{t+1} = b_1^{\mathsf{T}} \cdot Y_t + b_2^{\mathsf{T}} \cdot X_t + \epsilon^{(\mathsf{Y}|\mathsf{X})}$ ,

 $a, b_1, b_2$ : regression coefficient vectors, determined so that prediction errors  $Var[\epsilon^{(Y)}]$  and  $Var[\epsilon^{(Y|X)}]$  minimize.

▶ If  $Var[\epsilon^{(Y|X)}] \ll Var[\epsilon^{(Y)}]$ , then  $X \Rightarrow Y$ .

## Nonlinear Granger causality

▶ Our proposal: nonlinear autoregression models

$$a^{\mathsf{T}} \cdot \Phi(Y_{t+1}) = b_1^{\mathsf{T}} \cdot \Psi(Y_t) + \epsilon^{(Y)}$$
  
$$a^{\mathsf{T}} \cdot \Phi(Y_{t+1}) = b_2^{\mathsf{T}} \cdot \Psi(Y_t, X_t) + \epsilon^{(Y|X)}$$

 $\Phi, \Psi \colon$  nonlinear maps into some feature spaces.

- ▶ If  $Var[\epsilon^{(Y|X)}] \ll Var[\epsilon^{(Y)}]$ , then  $X \Rightarrow Y$ .
- ▶ Extension to conditional cases:  $X \Rightarrow Y \mid Z$

$$a^{\mathsf{T}} \cdot \Phi(Y_{t+1}) = b_1^{\mathsf{T}} \cdot \Psi(Y_t, Z_t) + \epsilon^{(Y)}$$
  
$$a^{\mathsf{T}} \cdot \Phi(Y_{t+1}) = b_2^{\mathsf{T}} \cdot \Psi(Y_t, Z_t, X_t) + \epsilon^{(Y|X)}$$

## Embedding of distributions in RKHS

- $\vdash \mathcal{H}_{\mathcal{V}}$ : Hilbert space on measurable space  $\mathcal{Y}$ , spanned by functions  $k_{\mathcal{Y}}(y,\cdot)$  $(y \in \mathcal{Y})$  with  $\langle k_{\mathcal{V}}(y, \cdot), k_{\mathcal{V}}(y', \cdot) \rangle = k_{\mathcal{V}}(y, y') \ \forall y, y' \in \mathcal{Y}$ . Y: random variable on  $\mathcal{Y}$ .
- Mean element in RKHS:  $\mathfrak{M}_Y = \mathbb{E}[k_{\mathcal{V}}(Y,\cdot)]$  and  $\mathfrak{M}_{YY} = \mathbb{E}[k_{\mathcal{V}}(Y,\cdot)k_{\mathcal{V}}(Y,\cdot)]$
- Conditional mean element in RKHS:  $\mathfrak{M}_{Y|X} = \mathbb{E}[k_{\mathcal{V}}(Y,\cdot)|X]$  and  $\mathfrak{M}_{YY|X} = \mathbb{E}[k_{\mathcal{V}}(Y,\cdot)k_{\mathcal{V}}(Y,\cdot)|X]$
- Product of mean elements in RKHS:  $\mathfrak{M}_Y \mathfrak{M}_Y = \mathfrak{M}_Y \otimes \mathfrak{M}_Y = \mathbb{E}[k_{\mathcal{V}}(Y,\cdot)]\mathbb{E}[k_{\mathcal{V}}(Y,\cdot)]$
- Product of conditional mean elements in RKHS:  $\mathfrak{M}_{Y|X}\mathfrak{M}_{Y|X} = \mathfrak{M}_{Y|X} \otimes \mathfrak{M}_{Y|X} = \mathbb{E}[k_{\mathcal{Y}}(Y,\cdot)|X]\mathbb{E}[k_{\mathcal{Y}}(Y,\cdot)|X]$

## Covariance operator

► Covariance operator in RKHS:

$$\begin{split} \langle g, \Sigma_{YY}g \rangle_{\mathcal{H}_{\mathcal{Y}}} &:= & \langle \mathfrak{M}_{YY} - \mathfrak{M}_{Y}\mathfrak{M}_{Y}, g \otimes g \rangle_{\mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}}} \\ &= & \mathrm{E}[g(Y)g(Y)] - \mathrm{E}[g(Y)]\mathrm{E}[g(Y)] \\ &= & \mathrm{Var}[g(Y)] \quad \forall g \in \mathcal{H}_{\mathcal{Y}} \end{split}$$

Conditional covariance operator in RKHS:

$$\begin{split} \left\langle g, \Sigma_{YY|X} g \right\rangle_{\mathcal{H}_{\mathcal{Y}}} &:= & \left\langle \mathfrak{M}_{YY} - \mathrm{E}_X [\mathfrak{M}_{Y|X} \mathfrak{M}_{Y|X}], g \otimes g \right\rangle_{\mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}}} \\ &= & \mathrm{E}[g(Y)g(Y)] - \mathrm{E}_X [\mathrm{E}[g(Y)|X]\mathrm{E}[g(Y)|X]] \\ &= & \mathrm{E}_X [\mathrm{Var}[g(Y)|X]] \quad \forall g \in \mathcal{H}_{\mathcal{Y}} \end{split}$$

## Difference of covariance operator and mean elements

$$\langle g, \Sigma_{YY}g \rangle_{\mathcal{H}_{\mathcal{X}}} - \langle g, \Sigma_{YY|X}g \rangle_{\mathcal{H}_{\mathcal{Y}}}$$

$$= \langle \mathbb{E}_{X}[\mathfrak{M}_{Y|X}\mathfrak{M}_{Y|X}] - \mathfrak{M}_{Y}\mathfrak{M}_{Y}, g \otimes g \rangle_{\mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}}}$$

$$= \operatorname{Var}_{X}[\mathbb{E}_{Y}[g(Y)|X]] \geq 0 \qquad \forall g \in \mathcal{H}_{\mathcal{Y}}$$

$$\begin{split} &\langle g, \Sigma_{YY|Z}g\rangle_{\mathcal{H}_{\mathcal{X}}} - \langle g, \Sigma_{YY|XZ}g\rangle_{\mathcal{H}_{\mathcal{Y}}} \\ &= &\langle \mathrm{E}_{XZ}[\mathfrak{M}_{Y|XZ}\mathfrak{M}_{Y|XZ}] - \mathrm{E}_{Z}[\mathfrak{M}_{Y|Z}\mathfrak{M}_{Y|Z}], g\otimes g\rangle_{\mathcal{H}_{\mathcal{Y}}\otimes\mathcal{H}_{\mathcal{Y}}} \\ &= &\mathrm{E}_{Z}[\mathrm{Var}_{X}[\mathrm{E}_{Y}[g(Y)|X,Z]]] \geq 0 \qquad \forall g\in\mathcal{H}_{\mathcal{Y}} \end{split}$$

## Order of mean elements and covariance operators

Order of mean elements

$$\begin{split} \mathfrak{M}_Y \mathfrak{M}_Y & \leq \ \mathrm{E}_Z[\mathfrak{M}_{Y|Z}\mathfrak{M}_{Y|Z}] \leq \ \mathrm{E}_{XZ}[\mathfrak{M}_{Y|XZ}\mathfrak{M}_{Y|XZ}] \leq \cdots \\ \text{in the sense, for all } g \otimes g \in \mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}} \\ \langle \mathfrak{M}_Y \mathfrak{M}_Y, g \otimes g \rangle_{\mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}}} & \leq \ \langle \mathrm{E}_Z[\mathfrak{M}_{Y|Z}\mathfrak{M}_{Y|Z}], g \otimes g \rangle_{\mathcal{H}_{\mathcal{Y}} \otimes \mathcal{H}_{\mathcal{Y}}} \leq \cdots \end{split}$$

Order of covariance operators

$$\cdots \leq \Sigma_{YY|XZ} \leq \Sigma_{YY|Z} \leq \Sigma_{YY}$$
,

in the sense, for all  $g \in \mathcal{H}_{\mathcal{Y}}$ 

$$0 \leq \cdots \leq \langle g, \Sigma_{YY|XZ}g \rangle_{\mathcal{H}_{\mathcal{V}}} \leq \langle g, \Sigma_{YY|Z}g \rangle_{\mathcal{H}_{\mathcal{V}}} \leq \langle g, \Sigma_{YY}g \rangle_{\mathcal{H}_{\mathcal{V}}}$$

#### Significance test of predictability

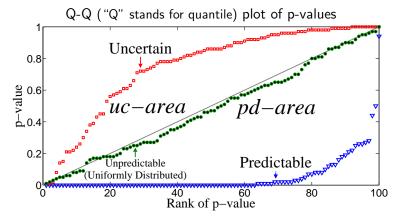
 $\blacktriangleright$  Hilbert-Schmidt (HS) norm of operator Σ:

$$\|\boldsymbol{\Sigma}\|_{\mathrm{HS}}^2 = \mathrm{Tr}(\boldsymbol{\Sigma}^\mathsf{T}\boldsymbol{\Sigma})$$

Unpredictability by HS norm

$$\begin{split} \|\Sigma_{YY|X}\|_{\mathrm{HS}}^2 &= \|\Sigma_{YY}\|_{\mathrm{HS}}^2 &\iff X \not\Rightarrow Y \\ \|\Sigma_{YY|XZ}\|_{\mathrm{HS}}^2 &= \|\Sigma_{YY|Z}\|_{\mathrm{HS}}^2 &\iff X \not\Rightarrow Y \mid Z \end{split}$$

▶ Significance test via random permutation  $\pi_i$ :


$$\begin{split} & \|\boldsymbol{\Sigma}_{YY|X}\|_{\mathrm{HS}}^2 \quad \ll \quad \|\boldsymbol{\Sigma}_{YY|X^{\pi_j}}\|_{\mathrm{HS}}^2 \approx \|\boldsymbol{\Sigma}_{YY}\|_{\mathrm{HS}}^2 \\ & \|\boldsymbol{\Sigma}_{YY|XZ}\|_{\mathrm{HS}}^2 \quad \ll \quad \|\boldsymbol{\Sigma}_{YY|X^{\pi_j}Z}\|_{\mathrm{HS}}^2 \approx \|\boldsymbol{\Sigma}_{YY|Z}\|_{\mathrm{HS}}^2 \end{split}$$

Note: No need to partition conditioning variable Z.

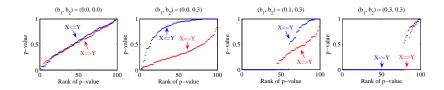
#### Subsampling-based multiple testing

m sub-time-series with pre-specified size  $n_0 \ll n \ (n \approx m \cdot n_0)$ 

$$\|\widehat{\Sigma}_{YY|X}^{(n_0)}\|_{\mathrm{HS}}^2 \ll \|\widehat{\Sigma}_{YY|X^{\pi_j}}^{(n_0)}\|_{\mathrm{HS}}^2 \quad \text{or} \quad \|\widehat{\Sigma}_{YY|XZ}^{(n_0)}\|_{\mathrm{HS}}^2 \ll \|\widehat{\Sigma}_{YY|X^{\pi_j}Z}^{(n_0)}\|_{\mathrm{HS}}^2$$

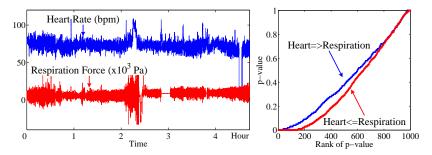


#### Simulated data: chaotic maps


Noisy logistic maps:

 $b_1$ : coupling strength of  $X \Leftarrow Y$ ;  $b_2$ : coupling strength of  $X \Rightarrow Y$ 

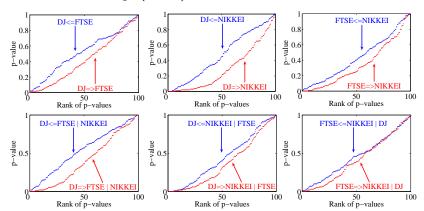
$$x_{t+1} = (1-b_1) a x_t (1-x_t) + b_1 a y_t (1-y_t) + \mu \xi_1$$
  


$$y_{t+1} = (1-b_2) a y_t (1-y_t) + b_2 a x_t (1-x_t) + \mu \xi_2$$

(Ancona et al. 2004) a=3.8,  $\mu=0.01$ ,  $\xi_{1,2} \propto \mathcal{N}(0,1)$ 



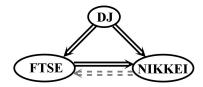
#### Real-world data: cardiorespiratory interaction


- Normally, Heart Rate ← Respiration Force
- ► Sleep apnea affects the normal process of RSA (Respiratory Sinus Arrhythmia), disturbs the usual patterns: Heart ⇒ Respiration (also claimed by Schreiber 2000, Bhattacharya et al. 2003, Ancona et al. 2004)



Data set B of Santa Fe Institute time series competition (Rigney et al. 1993)

#### Real-world data: co-movement of stock indexes I


- ▶ Daily movements from April 1984 to January 2008
- ▶ Down Jones (DJ) industrial average index, Financial Times Stock Exchange (FTSE) 100, and NIKKEI 225



#### Real-world data: co-movement of stock indexes II

#### Test results of daily co-movements:

- DJ⇒FTSE, and DJ⇒FTSE | NIKKEI
- DJ⇒NIKKEI, and DJ⇒NIKKEI | FTSE
- ► FTSE⇒NIKKEI, and FTSE⇒NIKKEI | DJ
- ► FTSE ← NIKKEI, but FTSE ≠ NIKKEI | DJ



#### Summary

► Subsampling-based kernel test of nonlinear Granger causality from time series data

#### Open issues:

► Connection to mutual information? (Gretton et al. 2005) or transfer entropy? (Schreiber 2000)

Thanks for your attention!