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Learning of causality in time series

» X :=(...,X—1,Xe, Xe41, - . .): discrete time, continuous state process
t € Z: discrete time point, usually taken at equally spaced intervals

> Time-delayed vector: X;:=(Xe—nt1,---»Xe—1,%)"

» Task: bivariate time series (X,Y) observed, estimate whether
the underlying process of X is causal to the underlying process
of Y or/and the other way around.

» Notation: “X YY", "X =Y", "X«<Y", or X&Y"

» Granger's concept of causality (1969): X = Y, if the future
values of Y can be better predicted using the past values of X
and Y compared to using the past values of Y alone.
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Linear Granger causality

X = Y Rt

Granger Causality Dynamic Bayesian Network (DBN)

» Standard test: linear autoregression models
Yier=a - Ye+e™) and Y1 =b - Yet by Xe+eYN)

a, b1, by: regression coefficient vectors, determined so that prediction

errors Var[e'*)] and Var[¢Y®)] minimize.

> If Var[e(YX)] « Var[e(V)], then X = Y.
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Granger causality in time series

Nonlinear Granger causality

» OQur proposal: nonlinear autoregression models

al - ®O(Yep1) = by -W(Yy) +eY)
al - d(Yer1) bl - W(Ye, X;) 4 Y%

& W: nonlinear maps into some feature spaces.
> If Var[e(V1¥)] « Var[e(V)], then X = Y.
» Extension to conditional cases: X =Y |Z

al - ®(Yer1) = b -W(Y:, Ze)+ V)
al - ®(Yer1) = b -U(Ye, Ze, Xe) + Y
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Embedding of distributions in RKHS

» Hy: Hilbert space on measurable space ), spanned by functions ky(y, )

(yeY) with (ky(y, ), ky(y's-)) = ky(y,¥") Vy,y €.
Y: random variable on V.

» Mean element in RKHS:
My = E[ky(Y,-)] and Myy = E[ky (Y, )ky (Y, )]

» Conditional mean element in RKHS:
My|x = E[ky(Y,-)IX] and Myy x = E[ky(Y, - )ky(Y,)|X]

» Product of mean elements in RKHS:
MyMy = My @My = Elky(Y,)|E[ky(Y, )]

» Product of conditional mean elements in RKHS:
My xMy|x = My x @My|x = E[ky (Y, )| X]E[ky(Y,-)|X]
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Covariance operator

» Covariance operator in RKHS:

= (Myy —MyMy, 8 D &)y, 0m,
= E[g(Y)g(Y)] - E[g(Y)IE[g(Y)]
= Varlg(Y)]  VgeHy

(&:Zvve)n,

» Conditional covariance operator in RKHS:

(Myy — Ex[MyxMyx], 8 @ g>Hy®Hy
= E[g(Y)g(Y)] - Ex[E[g(Y)IX]E[g(Y)IX]]

= Ex[Varlg(Y)[X]] ~ VgeHy

(& ZYY|Xg>Hy
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Difference of covariance operator and mean elements

(&, Zyv8)Hr — (8 Tyv|x8)Hy
= (Ex[MyxMyx] - MyMy, g ® g)1yary
= Varx[Ey[g(Y)IX]] >0 Vg € Hy

(& Zvy|z8)Hx — (& Lyy|xz8)Hy
= (Exz[My|xzMy|xz] — Ez[Myz2My 2], & © &) Hyory
= Ez[Varx[Ey[g(Y)IX,Z]]] >0 Vg € Hy
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Order of mean elements and covariance operators

» Order of mean elements
MyMy < Ez[MyzMy|z] < Exz[MyxzMy|xz] < -
in the sense, for all g® g € Hy @ Hy

My My, 8 ® &)yyan, < (Bz[MyizMy izl 8@ &)y op, <

» Order of covariance operators
< Yyyixz < Zyyiz £ Xyy,
in the sense, for all g € Hy
0<--- < <g7zW\ng>Hy < <gszY|Zg>Hy < (& Zyv8)n,
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Significance test of predictability

» Hilbert-Schmidt (HS) norm of operator X:
2
=i = Te(X7E)

» Unpredictability by HS norm

IZyvixllis = IEwlfs <=  X#Y

ISyyixzlfis = IZwizlis <= X#Y|Z

» Significance test via random permutation 7;:

IEvvixllfis < I Zyyixmillfs~ [Zvy (s

IZyyixzllfis < ||ZYY|X"J'ZH2HS% 1=y z s

Note: No need to partition conditioning variable Z.
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Subsampling-based multiple testing
m sub-time-series with pre-specified size ng < n (n~=m-ng)
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Simulated data: chaotic maps

Noisy logistic maps:
by: coupling strength of X<=Y; by: coupling strength of X=7Y

xt+1 = (I=b1)axe(l—x¢) + bray:(l—y) +pné&
Yt+1 = (1—b2)3)/t(1—)’t)+bzaxt(l—Xt)-i',U»fz

(Ancona et al. 2004) a=3.8, ©=0.01, 5172 O(N(O, ].)
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Real-world data: cardiorespiratory interaction

» Normally, Heart Rate <= Respiration Force

» Sleep apnea affects the normal process of RSA (Respiratory Sinus
Arrhythmia), disturbs the usual patterns: Heart=- Respiration
(also claimed by Schreiber 2000, Bhattacharya et al. 2003, Ancona et al. 2004)

Heart Rate (bprﬁ

Heart=>Respiratio

Respiration Torce (xf’(Pa)

Heart<=Respiratior
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Data set B of Santa Fe Institute time series competition (Rigney et al. 1993)
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Real-world data: co-movement of stock indexes |

» Daily movements from April 1984 to January 2008

» Down Jones (DJ) industrial average index, Financial Times
Stock Exchange (FTSE) 100, and NIKKEI 225
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Real-world data: co-movement of stock indexes Il

Test results of daily co-movements:
» DJ=FTSE, and DJ=-FTSE | NIKKEI
» DJ=-NIKKEI, and DJ=-NIKKEI | FTSE
» FTSE=-NIKKEI, and FTSE=-NIKKEI |DJ
» FTSE<NIKKEI, but FTSE« NIKKEI |DJ

—  "FTSE<=NIKKEI" might be spurious and mediated by DJ
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Summary

» Subsampling-based kernel test of nonlinear Granger causality
from time series data

Open issues:

» Connection to mutual information? (Gretton et al. 2005)
or transfer entropy? (Schreiber 2000)

Thanks for your attention!
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